A Stacked Delta-Nabla Self-Adjoint Problem of Even Order
نویسنده
چکیده
Existence criteria for two positive solutions to a nonlinear, even-order stacked deltanabla boundary value problem with stacked, vanishing conditions at the two endpoints are found using the method of Green’s functions. A few examples are given for standard time scales. The corresponding even-order nabla-delta problem is also discussed in detail. c © 2003 Elsevier Science Ltd. All rights reserved. Keywords—Time scales, Boundary value problem, Fixed points, Cone, Green’s function.
منابع مشابه
Dominant and Recessive Solutions of Self-Adjoint Matrix Systems on Time Scales
In this study, linear second-order self-adjoint delta-nabla matrix systems on time scales are considered with the motivation of extending the analysis of dominant and recessive solutions from the differential and discrete cases to any arbitrary dynamic equations on time scales. These results emphasize the case when the system is non-oscillatory.
متن کاملAn analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. At first, the non-self-adjoint spectral problem is derived. Then its adjoint problem is calculated. After that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. Finally the convergence ...
متن کاملThe Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملHenstock–Kurzweil delta and nabla integrals
We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کامل